Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III

Úloha č.: 18 Název: Laserová dopplerovská anemometria Vypracoval: Viktor Babjak.....stud. sk. F 11...... dne: 14. 3. 2006 Odevzdal dne:

Hodnocení:

Připomínky:

Neuvedená chyba strednej hodnoty rýchlosti, iba náznak pri parametroch fitovacej funkcie v histograme.

Zámena chyby strednej hodnoty rýchlosti a štandardnej odchýlky rozdelenia.

V úlohe 5 nie je vzatý do úvahy lom pri vstupe oboch lúčov do kyvety s vodou.

kapitola referátu	možný počet bodů	udělený počet bodů		
Teoretická část	0 - 3	3		
Výsledky měření	0 - 10	8		
Diskuse výsledků	0 - 4	3		
Závěr	0 - 2	2		
Seznam použité literatury	0 - 1	1		
Celkem	max. 20	17		

Pracovné úlohy:

- Preveďte kalibráciu "optickej sondy anemometra". Použite usporiadanie navrhnuté na *obr. 4.6-5* v [1]. Parametre optickej sondy získate meraním vzdialenosti interferenčných plošiek v priesečníku laserových lúčov metódou projekcie a takisto aj výpočtom z geometrie usporiadania. Oba výsledky porovnajte.
- 2. Pripravte aparatúru na meranie rýchlosti častíc. Skontrolujte chod lúčov v detekčnej optike a vymedzte priestorovou dierkovou clonou.
- 3. Na základe priebehu dopplerovských signálov optimalizujte dopplerovský signál na prúdenie vody v kyvete.
- 4. Zmerajte frekvencie dopplerovského signálu na súbore 60 80 častíc. Preveďte hodnoty frekvencie na hodnoty rýchlostí. Graficky spracujte rozloženie rýchlosti vo vode formou histogramu. Histohram fitujte funkciou normálneho rozdelenia a z nej stanovte strednú hodnotu rýchlostí častíc a štandardnú odchýlku nájdeného rozdelenia.
- 5. Diskutujte, aký vplyv na výsledok má to, že parametre optickej sondy sú merané vo vzduchu, zatiaľ čo meranie rýchlostí častíc prebieha vo vode.

Teoretická časť:

Laserová dopplerovská anemometria sa používa na určovanie rýchlosti prúdenia kvapalín a plynov. Meranie je založené na Dopplerovom princípe, podľa ktorého elektromagnetické žiarenie rozptýlené alebo odrazené časticou v prúdiacom prostredí zmení frekvenciu v závislosti na rýchlosti častice.

Ak zväzok rovinných monochromatických vĺn s frekvenciou ω_0 a vlnovým vektorom $\vec{k_0}$ dopadá na časticu, ktorá sa pohybuje rýchlosťou \vec{v} ($v \ll c$), tak pre zložky elektrických vektorov rozptýlenej elektromagnetickej vlny s vlnovým vektorom $\vec{k_s}$ platí, viď [1]

$$E(t, \overrightarrow{k_s}) \approx e^{iw_0 t + i\overrightarrow{v}(\overrightarrow{k_s} - \overrightarrow{k_0})t} = e^{iw_0 t + iw_D t}, \qquad (1)$$

kde $w_D = \vec{v} (\vec{k_s} - \vec{k_0})$ je dopplerovská frekvencia (dopplerovský frekvenčný posun). Dopplerovská frekvencia bude v rôznych smeroch pozorovania \vec{s} rôzna.

Smerová závislosť dopplerovskej frekvencie sa odstraňuje v tzv. diferenciálnom usporiadaní. Využíva sa dvojica skrížených identických laserových lúčov, ktorých priesečník vytvára optickú sondu anemometra; rýchlosť sa meria len v tomto priesečníku.

Vznik diferenciálneho dopplerovského signálu môžeme vysvetliť pomocou interferencie laserových lúčov v ich priesečníku. V tomto priesečníku vzniká trojrozmerné interferenčné pole s rovinnými plôškami konštantnej fázy, kolmými na rovinu danú laserovými lúčmi, viď *obr.* 4.6-3 v [1]. Vzdialenosť týchto plošiek d_F je

$$d_F = \frac{l_0}{2\sin\frac{J}{2}},\tag{2}$$

kde *J* je uhol pretnutia lúčov, viď *obr.* 4.6-2 v [1] a λ_0 je vlnová dĺžka použitého žiarenia (v úlohe sa používa He – Ne laser, ktorý vysiela lúče s vlnovou dĺžkou $I_0 = 632,8 nm$).

Po prelete častice týmto interferenčným poľom bude mať rozptýlené svetlo frekvenciu

$$\Delta n_D = \frac{v_x}{d_F} = v_x \frac{2\sin\frac{J}{2}}{l_0},\tag{3}$$

kde v_x je priečna zložka vektoru rýchlosti častice.

Pozorovaný diferenciálny dopplerovský signál bude tvorený periodickým radom pulzov s frekvenciou Δv_D a s približne gaussovskou obálkou v dôsledku priečneho gaussovského rozdelenia intenzity v optickej sonde.

Dopplerovskú frekvenciu môžeme určiť aj tak, že odčítame dĺžku l pripadajúcu na celistvý počet pulzov N(l je relatívna dĺžka v jednotkách počtu vzorkou).

$$\Delta n_D = \frac{N}{lt},\tag{4}$$

kde t = 30,02 ms je vzorkovacia perióda pamäťového osciloskopu. Počet pulzov N môže byť maximálne rovný počtu interferenčných prúžkov N_F ($N \le N_F$).

Podľa (3) a (4) pre rýchlosť častice platí

$$v_x = \frac{Nd_F}{lt} = \frac{Nl_0}{2lt\sin\frac{J}{2}}.$$
(5)

Výsledky meraní:

Kalibrácia optickej sondy anemometra metódou projekcie

Na kalibráciu sondy metódou projekcie som zostavil aparatúru podľa *obr.* 4.6-5 v [1]. Odklonené lúče sú projekčným objektívom zobrazované na tienidlo (na stenu). Os mikrometra som umiestnil do miesta, v ktorom sa lúče pretínali. Pohybom objektívu som nastavil taký obraz, ktorého priemer bol minimálny. Na tienidle som vyznačil krajné polohy projekcie optickej sondy. Posunom mikrometra cez interferenčné pole som určil vzdialenosť D_F , ktorá zodpovedá N_F interferenčným prúžkom. Vzdialenosť dvoch interferenčných plošiek d_F som určil vydelením priemeru optickej sondy D_F celkovým počtom medzier medzi interferenčnými prúžkami ($N_F - 1$), t.j. platí

$$d_F = \frac{D_F}{N_F - 1}.$$
(6)

Namerané hodnoty:

•
$$D_F = (0,46 \pm 0,02)mm$$

•
$$N_F = 17$$

Podľa (6) pre vzdialenosť dvoch interferenčných plošiek d_F platí

$$d_F = (28, 8 \pm 1, 3) m n$$

pričom chybu d_F som určil podľa toho, že relatívna chyba d_F je taká istá ako relatívna chyba D_F .

Kalibrácia optickej sondy z geometrie usporiadania

Pri kalibrácii sondy z geometrie usporiadania som vychádzal z *obr.* 4.6-6 v [1]. Vo vzdialenosti d_2 od optickej sondy som určil rozostup d_1 laserových lúčov vystupujúcich z vysielacieho objektívu. Keďže určenie presnej polohy optickej sondy bolo náročné, tak som určil aj rozostup d_3 lúčov v blízkosti odkláňacieho zrkadla, viď *obr.* 1. Rozostup lúčov som určoval ma milimetrovom papieri. Chybu d, d_1, d_2 a d_3 som určil z presnosti meradiel.

Namerané hodnoty:

•
$$d_1 = (3, 4 \pm 0, 2)mm$$

•
$$d_2 = (157 \pm 2)mm$$

•
$$d_3 = (1,9 \pm 0,2)mm$$

• $d = (245 \pm 2)mm$

Z týchto hodnôt som určil uhol pretnutia laserových lúčov J.

V tejto úlohe sa používa He-Ne laser, ktorý je zdrojom žiarenia s vlnovou dĺžkou $l_0 = 632,8 nm$. Podľa (2) pre vzdialenosť d_F dvoch interferenčných plošiek platí

$$d_F = (29, 2 \pm 1, 5) mm$$
.

Chybu d_F som určil podľa toho, že relatívna chyba d_F je taká istá ako relatívna chyba J. Chybu určenia J som určil podľa kvadratického zákona prenosu chýb, vid' [2].

V ďalších výpočtoch používam strednú hodnotu d_F získanú z metódy projekcie a z geometrie usporiadania, t.j.

$$d_F = (29,0\pm 1,5)mm$$

Meranie rýchlosti častíc

Frekvenciu dopplerovského signálu som zmeral na súbore 80 častíc. Pre každú časticu som určil počet pulzov a ich dĺžku v časových jednotkách (vzorkovacia perióda pamäťového osciloskopu je t = 30,02 ms). V grafe 1 je ukážka záznamu preletu jednej častice.

Priečnu zložku rýchlosti častice som určil podľa (5). Namerané a vypočítané hodnoty sú v *tabuľke 1*. Stredná hodnota rýchlostí častíc a štandardná odchýlka nájdeného rozdelenia podľa normálneho (Gaussovho) rozdelenia je

$$\langle v \rangle = (66, 4 \pm 6, 2) \cdot 10^{-3} \, ms^{-1}$$
.

V grafe 2 je histogram rozloženia rýchlosti so šírkou binu $0,0045 m.s^{-1}$ (celý rozsah nameraných rýchlostí je rozdelený na 9 intervalov Δv). Nameranými hodnotami som preložil gaussovú krivku (pomocou programu *Origin*)

y = 27,0 · exp
$$\left(-\frac{(x-66,4)^2}{2 \cdot 6,2^2}\right)$$
.

Diskusia:

Hodnoty d_F vzdialenosti interferenčných plošiek v optickej sonde laserového anemometra určené metódou projekcie a z geometrie usporiadania sa v rámci chyby zhodujú.

Pri metóde vychádzajúcej z geometrie usporiadania je náročné presne určiť polohu priesečníka laserových lúčov a hlavne vzdialenosť laserových lúčov na tienidle (relatívna chyba 6%–11%). Pri metóde projekcie najväčším zdrojom chýb je určenie priemeru optickej sondy D_F (relatívna chyba 4,3%). Na výpočet rýchlosti častíc vo vode som používal strednú hodnotu d_F získanú pomocou týchto dvoch metód.

Z porovnania relatívnych chýb vyplýva, že metóda projekcie na určenie vzdialenosti interferenčných plošiek je presnejšia ako metóda vychádzajúca z geometrického usporiadania daného systému.

Rozloženie rýchlosti častíc vo vode zodpovedá približne Gaussovmu rozdeleniu. Na overenie tohto tvrdenia by sme potrebovali oveľa viac meraní, aby sme mohli s istotou tvrdiť, že namerané rozdelenie konverguje ku Gaussovmu rozdeleniu. Rýchlosť častíc som určoval len pre tzv. dopplerovské častice – t.j. častice, ktoré sa pohybujú kolmo na interferenčné roviny a neprekrývajú sa.

Rýchlosť častíc vo vode som určoval podľa vzťahu (5). V tomto vzťahu vystupuje vzdialenosť interferenčných plošiek d_F , ktorú som určil podľa parametrov optickej sondy určených vo vzduchu. Vo vzťahu (2) na určenie d_F vystupuje vlnová dĺžka λ_0 použitého žiarenia a keďže voda má iný index lomu ako vzduch, tak vlnová dĺžka použitého žiarenia je vode iná ako vo vzduchu. Tento fakt môže mať vplyv na určovanie rýchlosti častíc vo vode.

Záver:

Vzdialenosť interferenčných plošiek som určil dvoma metódami:

- metódou projekcie: $d_F = (28,8\pm1,3)mn$
- z geometrie usporiadania: $d_F = (29,3\pm1,5)mn$

Vo výpočtoch som používal strednú hodnotu d_F , t.j.

$$d_F = (29,0\pm1,5)mm$$

Na súbore 80 častíc som Dopplerovskou anemometriou určil strednú rýchlosť častíc vo vode (v priesečníku laserových lúčov):

$$\langle v \rangle = (66, 4 \pm 6, 2) \cdot 10^{-3} \, ms^{-1}$$
.

V grafe 2 je zobrazený histogram rozdelenia rýchlosti častíc. Histogram som fitoval funkciou normálneho rozdelenia, t.j. gaussovou krivkou s rovnicou

y = 27,0 · exp
$$\left(-\frac{(x-66,4)^2}{2 \cdot 6,2^2}\right)$$
.

Literatúra:

- [1] študijný na stránkach fyzikálneho praktika: <u>http://physics.mff.cuni.cz/vyuka/zfp/</u>
- [2] Englich, J.; Zpracovaní výsledků fyzikálních měření, LS 1999/2000

N	l	$v \cdot 10^{-3} \ [ms^{-1}]$	N	l	$v \cdot 10^{-3} \ [ms^{-1}]$	Ν	l	$v \cdot 10^{-3} \ [ms^{-1}]$
12	168	69,0	12	150	77,3	10	139	69,5
12	150	77,3	12	149	77,8	12	172	67,4
11	159	66,8	11	173	61,4	13	203	61,9
12	240	48,3	11	132	73,2	12	166	69,8
14	239	56,6	11	153	69,5	13	210	59,8
12	151	76,8	12	173	67,0	14	230	58,8
11	167	63,6	11	129	74,9	13	191	65,8
12	180	64,4	14	184	73,5	15	229	63,3
13	176	71,4	11	166	64,0	13	182	69,0
17	245	67,0	13	190	66,1	12	184	63,0
9	135	64,4	13	192	65,4	11	163	65,2
13	214	58,7	13	176	71,4	14	239	56,6
10	158	61,1	12	170	68,2	10	156	61,9
10	153	63,1	16	215	71,9	13	191	65,8
14	229	59,1	13	179	70,2	12	181	64,0
14	228	59,3	12	161	72,0	11	167	63,6
13	176	71,4	16	219	70,6	12	180	64,4
9	145	60,0	12	208	55,7	11	167	63,6
11	162	65,6	15	195	74,3	12	189	61,3
10	139	69,5	11	157	67,7	13	205	61,3
11	136	78,1	12	192	60,4	13	192	65,4
13	166	75,7	11	133	79,9	10	145	66,6
10	158	61,1	11	140	75,9	9	131	66,4
9	128	67,9	12	222	52,2	10	143	67,6
10	130	74,3	11	167	63,6	11	186	57,1
10	151	64,0	9	123	70,7	11	156	68,1
12	171	67,8	14	204	66,3			

Tabuľka 1 – Určovanie rýchlosti častíc vo vode

